

Battery Storage and Grid Integration Program An initiative of The Australian National University

Flexibility Challenges and Opportunities

Lachlan Blackhall

Entrepreneurial Fellow and Head, Battery Storage and Grid Integration Program The Australian National University

Acknowledgement of country

I acknowledge and celebrate the First Australians on whose traditional lands we live and work, and pay my respect to their elders past and present.

f The Australian National University

Who Am I?

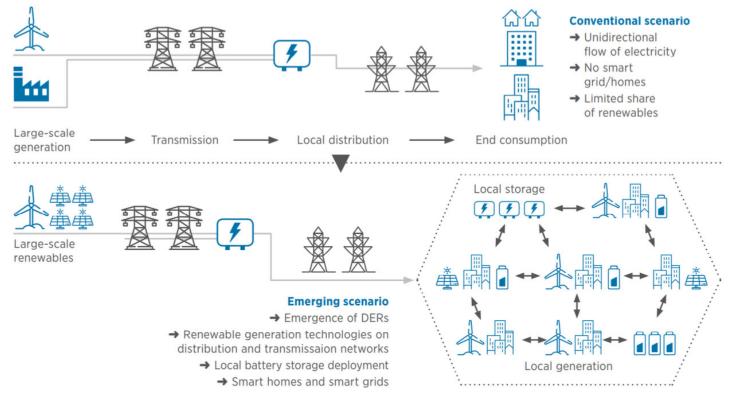
- Previously
 - CTO and Co-Founder of Reposit Power (VPP Software and Systems).
- Currently
 - Head, Battery Storage and Grid Integration Program.
 - Independent Chair of the Interoperability Steering Committee (ISC).

BSGIP Materials, Battery Technologies and Characterisation

BSGIP Social Science, Economics and Policy

Australian

Interoperability Steering Committee


- Formed in 2021 to provide independent technical advice to support DER integration and interoperability.
- Membership includes market and regulatory bodies and industry groups.
- Employs subject matter experts and a secretariat who undertake the work of the committee.
- Has become central to DER integration and interoperability in Australia.

Our Future Electricity System

https://www.irena.org/-/media/Images/IRENA/Infographics/2019/Feb/Innovation-Landscape---Distributed-energy.jpg

An initiative of The Australian National University

Why Flexibility?

Operating the Electricity System (@30,00ft)

- System Requirements
 - Energy Reliability (Supply = Demand)
 - Energy Security (Stability)
- Network Physical and Operational Limits
 - Voltage Limits
 - Thermal Constraints
- We achieve these operational requirements by controlling energy assets.

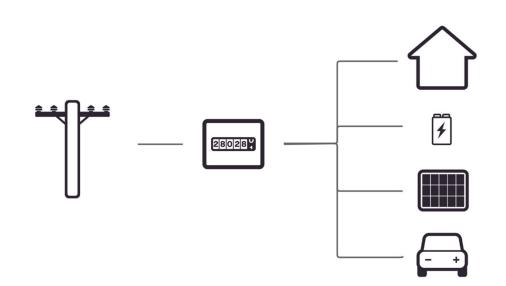
Flexibility

- The shift to renewable and distributed generation and storage changes the point(s) of control in the system.
- Flexibility is simply about ensuring we have *enough controllable assets* to achieve the operational requirements.
 - Does not require all assets to be controllable (i.e. some assets will remain passive).
 - Does require an understanding of 'enough' in various scenarios.

Flexibility Building Blocks

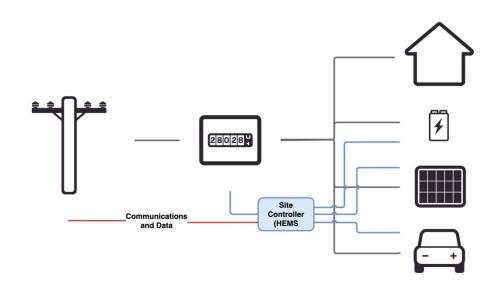
Australian

Flexibility Building Blocks


- Device Standards (Physical Response)
- Communications and Data (Visibility)
- Orchestration and Coordination
 - Setpoints; or
 - Envelopes and Incentives.
- Policy

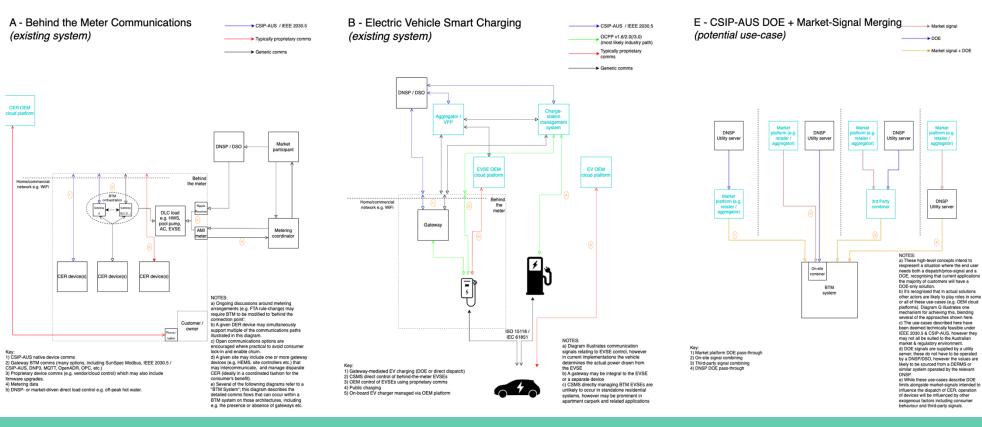
Device Standards

- The inverter connection standard is AS/NZS 4777.
- Emerging use of AS/NZS 4755.
- These technical standards define the physical response of an asset.



Communications and Data

- DER integration using IEEE2030.5.
 - CSIP-AUS + Testing Guide
 - Both via Home Energy Management System (HEMS) and Direct to Device.
- EV integration using OCPP + CSIP-AUS
- Utility scale assets integrated using Scada (DNP3).
- A Site Controller Performance Standard is needed to link device standards and communications protocols.



DER Reference Architecture

Orchestration and Coordination – Setpoint Control

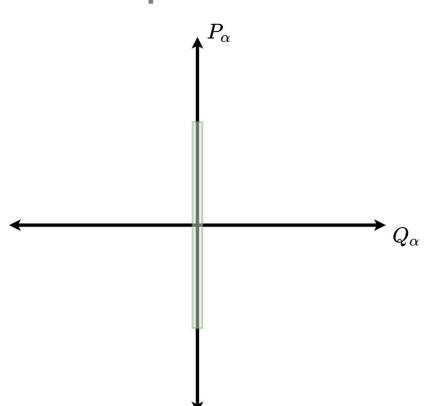
- Centrally calculating setpoints for all distributed assets is impractical. Requires
 - Vast amounts of real-time data.
 - Low communications latency.
 - Knowledge of behind the meter preferences.
 - Data sharing between the system and distribution network operator (complicated!).

e of The Australian National University

Orchestration and Coordination - Envelopes and Incentives

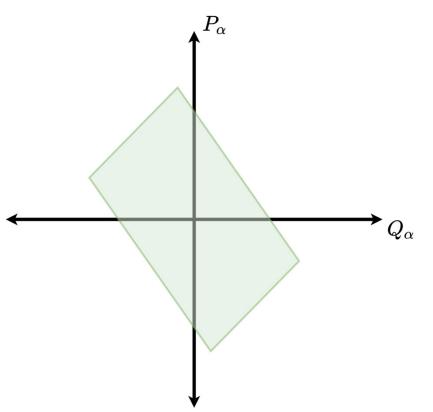
- It is possible to separate network capacity management from the flows of energy in the network and manage them separately.
 - Network capacity is managed via Dynamic Operating Envelopes (DOEs).
 - Energy flows are managed / incentivised through energy markets and network services contracts or markets.

Dynamic Operating Envelopes


- In a given time interval, a dynamic operating envelope (DOE) is a principled allocation of the available hosting capacity to individual or aggregate connection points that guarantees that the physical or operational limits of the network and system are not breached.
- The physical or operational limits of the network and system can be due to:
 - Thermal limits
 - Voltage limits
 - Minimum demand (system security constraints)
- Operating Envelopes are to be published per connection point and can be aggregated up in aggregation zones. An aggregation zone corresponds to a collection of assets that are located 'behind' the same binding constraint.

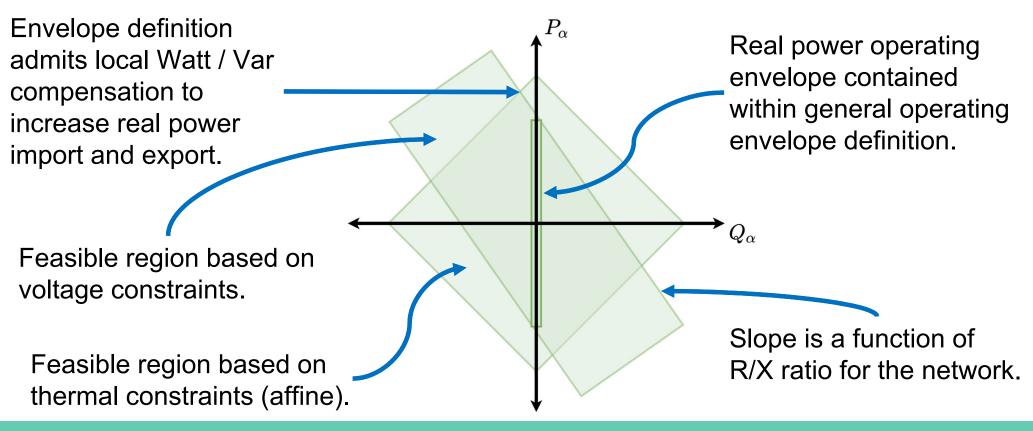
Dynamic Operating Envelope

An illustrative operating envelope for an individual DER asset or connection point that only provides real power.



Dynamic Operating Envelope

An illustrative operating envelope for both real and reactive power that would arise at an individual node when both network voltage and thermal constraints are considered jointly.



Dynamic Operating Envelope

DOE Projects in Australia

- Project evolve Original DOE demonstration Project
 - https://arena.gov.au/projects/evolve-der-project/
- Project Symphony DOE calculation Engine for Western Power
 - https://arena.gov.au/projects/western-australia-distributed-energy-resourcesorchestration-pilot/
- Converge Shaped Operating Envelopes for Evo Energy.
 - https://arena.gov.au/projects/project-converge-act-distributed-energy-resourcesdemonstration-pilot/
 - https://arena.gov.au/assets/2022/09/der-market-integration-trials-summary-report.pdf
- Project Edith DOE and Dynamic Pricing Engine for Ausgrid.
 - https://cdn.ausgrid.com.au/-/media/Documents/Reports-and-Research/Project-Edith/Project-Edith-2022.pdf

Policy

- Technical capabilities without policy will result in over engineering.
- Policy without technical capabilities is unachievable.
- There needs to be clear, outcomes based policies design and implementation follows outcomes.
- Outcomes must incorporate householder and community perspectives (social licence).

Asset Specific Flexibility Considerations

Solar

- Uplifting passive solar to active solar is important.
- DOEs provides important capabilities to prevent challenges caused by solar reverse flows:
 - Minimum demand
 - Voltage limits

- DOEs encourage time shifting of energy at zero economic cost.
- DOEs are considered critical for enabling community and neighbourhood batteries in Australia.

- V2G is not ready!
- Managed charging is a critical flexibility capability.
- DOEs underpin managed charging for EVs.

An initiative of The Australian National University

Lessons Learned

Australian

Jational

Flexibility Lessons Learned in Australia

- Physics always wins.
 - \$\$\$ can't change physics.
- Flexibility mechanisms need to be explainable, understandable, and staged.
 - Simple is better if possible.
- Capability uplift takes time.
- Need to understand the difference between markets and transactions.
- Important to collaborate globally!

Thankyou

Lachlan Blackhall

lachlan.blackhall@anu.edu.au +61 412 946 126

Battery Storage and Grid Integration Program

The Australian National University Canberra, Australia **bsgip.com**