

Topics

- Why did Unison go Composite?
- The Journey of Change
- Design Decisions for Standardisation
- Standard Arms \& Components
- Experiences so far

Why did Unison go Composite?

Wood Arms - Issues

Splits

Decay

Bowing and twisting

Burning

Why did Unison go Composite?

Steel Arms - Issues

Animal Flashover

Bird 33kV Flashover

Bird Flashover

Corrosion

A Journey of Change

- Market Research
- Material Comparison

	Galvanised Steel	Hardwood	Composite
Known strength	\checkmark	\times	\checkmark
Resistant to Known Failure Modes			
Rust	\times	\checkmark	\checkmark
Decay (rot)	\checkmark	\times	\checkmark
Splitting	\checkmark	\times	\checkmark
Burns readily	\checkmark	\times	\checkmark
Easily modified	\times	\checkmark	\times
Cost	\times	\times	\checkmark
Weight	\times	\checkmark	limited

Potential Issues - UV and Longevity

Australasian Users of Wagner's composite arms local UV levels. Crossarm numbers from 2017

Blooming issues in coastal areas with $1^{\text {st }}$ version of coating, coating revised in 2010 and no subsequent issues

A Journey of Change

- Industry Research and Interviews

- Product trial
- High Corrosion Sulphur Environment
- Terminating 2 circuits

Design Decisions - Scope

In Scope

- 11 kV arms
- 33 kV arms
- Arm Braces
- Attachments:
- ABS
- Drop out fuses

Out of Scope

- LV arms
- Mounting:
- Recloser/RCS
- Regulators

Design Decisions

How far out to put the centre phase strain?

The Powerlines People

Clevis

unison

Standard Arms

Standard Lengths

$2.2 \mathrm{~m}, 2.6 \mathrm{~m}, 3.2 \mathrm{~m}, 4.1 \mathrm{~m}$

Double Delta Arm

Composite Standard Arms

Length (m)	Configuration	Dimensions (mm)
2.2	Both	100×100
2.4	Offset \& ABS takeoff	100×100
2.6	Both	100×100
3.2	Both	100×100
3.6	Dual Circuit	100×100
4.1	Both	100×100

Offset Arm

Components \& Handling

Standard Drawings

Identify standard components
Develop standard arm assemblies

unison

Industry Standardisation

- The Lines Company are using our designs. Currently working with PowerCo and Vector to standardise our arms
- Full suite of Busck pole drawing and happy to share

Failure Hierarchy

Experiences

- Less build variability with standard drawings and no drilling
- More care required when lining up H Structures
- "Lighter - much nicer on my back"
- Some minor damage from handling
- Small number of $125 \times 125 \mathrm{~mm}$ arms needed for strength

Stakeholder Feedback

- Designers - Designing with a known strength
- Control Room - Improving reliability from reduced animal trippings
- Field Crews - Lighter and simple to use
- Stores - 33\% fewer arm types = less stock
- Asset Management - consistent quality and long life expected

Any Questions?

Mitch Graham mitch.graham@unison.co.nz

Industry Standardisation - Get in touch if you are interested, full suite of Busck pole drawing available

