FOUNDATION

AURORA ENERGY AND MEYER CRUDEN

:nenar

1

Background

What's the point of a meeting, anyway?

Fatal foundation failure in 2011
A number of contributing factors in this, however the foundation was identified in the QA of the pole installation which led to the site being revisited and subsequently climbed.

Consequences?
\times Increased detail on designs, with specific placement \& / or poles pegged on site
\times Detail of the foundation shown (depth, aggregate, donut, blocks placement etc..)
\times Notes to specify backfill material
Generally, adherence to AS/NZS 7000

Where are we today

\times It is reasonable to suggest that our industry approach to line construction and pole replacements has seen a marked improvement in recent years.
\times As we continue to improve and refine our design focus, we inevitably begin to dive deeper into other connected components of the structure and its supports.
\times This naturally starts with standardizing materials components and configurations, conductor types, regional loads maps and in some cases soil maps.
\times The challenge here is that many of these factors can be reasonably defined and be consistent \& have sufficient redundancy to withstand significant events. However, soils can and do vary considerably within a comparatively small area.

3

Aurora's Network

Aurora's Network

\times Covers a broad region, Coastal \& Central Otago
\times Has a number of approved contractors (6 or so)
\times They all have different installation methodologies (ie. use of hole boring, hydro vac \& / or back-hacker)
\times With numerous soil ground types, such as Greywacke, Basalt, Clays, Alluvial gravels / schists, reclamation silts \& low level tidal (Sth Dunedin), drained wetlands (Taieri Plains etc..).

5

Our Standard Approach

\times We (at Aurora) have traditionally specified "compacted stabilised cement backfill" on our designs. This was AP40 gravel compacted in layers, not exceeding $150 \mathrm{~mm}, 10 \%$ cement by weight.
$\times 900 \mathrm{Dia} \times 1.8 \mathrm{~m}$ deep $-4 \times 40 \mathrm{~kg}$ cement bags.
$\times 600 \mathrm{Dia} \times 3.2 \mathrm{~m}$ deep $-3 \times 40 \mathrm{~kg}$ cement bags.
$\times 750 \mathrm{Dia} \times 3.2 \mathrm{~m}$ deep $-5 \times 40 \mathrm{~kg}$ cement bags.
$\times 900 \mathrm{Dia} \times 3.2 \mathrm{~m}$ deep $-8 \times 40 \mathrm{~kg}$ cement bags.
\times Its fair to say that we don't effectively QA this other than identifying embedment issues or sloping ground.
\times Also during the Fastrack Pole replacement in 2016/17 a number of process "improvements"; predominately to free up Lines resource were introduced. These were around third party excavation, pre-bagged backfill to site and TMC.

Considerations

\times We (at Aurora) have traditionally specified "compacted stabilized cement backfill" on our designs. This was AP40 gravel compacted in layers, not exceeding $150 \mathrm{~mm}, 10 \%$ cement by weight.
\times We appreciate that pole foundation design is an important part of achieving safety for the public and for our contractors who attach themselves to our poles. Although in some cases our requirement for cement is likely to be conservative, erring on the side of caution/safety.
x In late 2019 one of our Contractors questioned Aurora over the use of cement in its standard approach to foundation reinforcement, principally from a Health \& Safety perspective.
x Our conservatism is leading to a cement handling safety risk and we agree that we need to find a Safety in Design method that eliminates or reduces the need for other safety control measures (e.g. dust masks).
\times The aggregates used in the standard Portland cement used to "blend" with either AP20 or AP40 backfills has been identified as a health risk..

\times Add notes

Our Learnings

x It's what's underneath that matters
\times Even good foundations may only be half the rating of the pole
\times Compact....Compact....Compact
\times B
\times Y
$\times \mathrm{O}$
\times B

9

Our Learnings

x It's what's underneath that matters
\times Even good foundations may only be half the rating of the pole
\times Compact....Compact....Compact
\times Bring
\times Your
\times Own

- Backfill

Where from here?

\times Universal foundation specification and methodology
\times Tested
\times Specific

* Measurable
\times Achievable
\times Repeatable

11

