Maintenance Strategy Reviews

Defining maintenance strategies and documenting Maintenance Plans

David Lynch - Asset Management and Information Manager

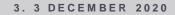
GENESIS ENERGY LIMITED

Introduction

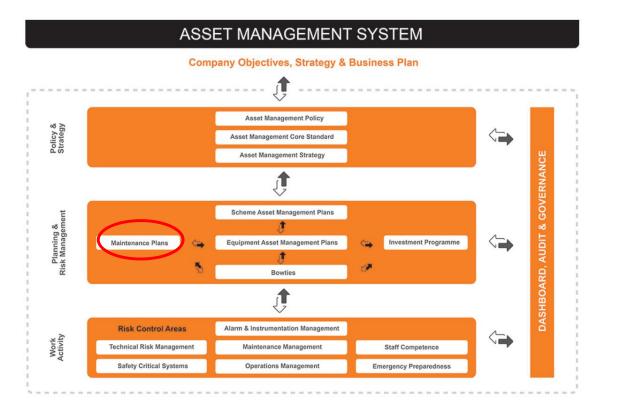
— "Doing the right things, on the right assets, at the right time"


This presentation steps you through the journey that Genesis Energy is undertaking to review maintenance strategies across our Hydro and Thermal generating assets.

- Background
- Problems / current state
- Framework and process
- Implementation and Progress
- Results and Benefits
- Questions



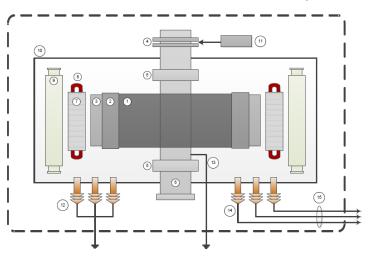
North Island


South Island

Asset Management System

— Progress to date...

- AMS Genesis Energy's Asset Management System (AMS) has progressed over the past 5 years, aligned to ISO 55000 and using process safety foundations.
- Bowties and Equipment Asset Management Plans (EAMPs) are in place, and are informing our Process Safety Dashboard, and asset investment programme
- This work has been developed based on current maintenance and operating practices (with some reviews and changes completed along the way)



Asset Groups

— Boundaries are defined to align with technical accountability

Engineering Category	No.	Core Asset Group	EAMP Title	
	1	Thermal Generators	Thermal Generators	
	2	Hydro Generators	Hydro Generators	
			Transformers - Generator Transformers	
Electrical	3	Transformers	Transformers - Other Transformers	
	4	Motors	Motors	
	5	Cables & Earthing	Cables & Earthing	
			EHV Distribution	
	6	EHV Distribution	EHV Transmission Lines & Structures	
	-	UN/IN/ Distribution & Destantion	HV and LV Distribution	
	7	HV/LV Distribution & Protection	Thermal & Hydro Generator Protection Systems	
	8	DC Systems & UPS	DC Systems & UPS	
	9	Thermal Control Systems	Thermal Control Systems	
Control	10	Hydro Control Systems	Hydro Control Systems	
Control Systems	11	Field Instrumentation	Field Instrumentation	
	12	Systems Architecture and Applications	Systems Architecture and Applications	
	13	Communication Systems	Communication Systems	
	14		Boilers	
		Boilers & HRSG	High Energy Pipework	
			HRSG	
			Condensate & Feedwater	
		Mechanical Auxiliary Plant	Compressed Air Systems	
			Cooling Water (Hydro)	
			Cooling Water (Thermal)	
	15		Water Treatment Plant	
			Screen cleaners	
			Gas Systems - (non-fuel)	
			Drainage & Dewatering	
Mechanical	16	Thermal Turbines	Gas Turbines	
	16	mermai ruibines	Steam Turbines	
	17	Hydro Turbines	Hydro Turbines	
	18		Ash Plant	
		Fuel Systems	Coal & PF Systems	
		ruei systems	Fuel Gas System	
			Liquid Fuels System	
	19		Ancillary Systems	
		Facilities	Diesel Generators & Pumps	
		T actinues	Fire Protection	
			Water Services	
	20	Cranes and Lifting Equipment	Cranes and Lifting Equipment	
			Dams	
Civil	21	Hydraulic Structures	Low Pressure Conveyance	
		Tyuraulic Structures	Penstocks	
			Shafts & Tunnels	
	22	Civil Structures	Buildings & Structures	
	22	Asset Systems & Information	Roads, Bridges and Drainage Generation Systems & Information	

Boundary diagrams clarify what is included / excluded from each plan

ltem Comp		Component	Scope / Terminal Points		
1 Rotor body (hub/spider)		Rotor body (hub/spider)	All sections between the shaft and rim		
2		Rotor rim	Rotor section between the rotor body and poles, including female dove tail		
3 Rotor poles		Rotor poles	Pole body, field winding, damper winding, male dove tail, wedges, keys and series connections (palms)		
4		Slip rings	Including brush gear assembly and dust extraction system		
6		Shaft	From the turbine coupling upwards		
7		Stator core	Laminated core, including through bolts, clamping plates and ventilation ducts		
8		Stator winding	HV winding bar or coil, including phase and neutral rings, leads, PD couplers and surge rings		
9		Coolers	Including filters, rotor fans, instrumentation and pipework		
1	0	Stator casing and frame	Core frame, outer casing, covers and hatches		
1	1	Excitation System / AVR	Including power supply, excitation transformer, and DC output at the slip rings		
12		Neutral terminals	cluding busbars, links, star point and bushings		
13		Shaft Earthing	Brush and cabling		
14		Phase terminals	erminals Including busbars, links, star point and bushings		
Exclusions	15	HV Cables	Including, insulators, IPB, insulating oil, bus duct, bellows, seals, breathers and support structures Note: HV cables are covered under the Cables & Earthing EAMP		
	5	Bearings	Upper and Lower – Guide and Thrust Note: Bearings and Lubrication Systems are covered under the turbine EAMP		
		Main Earth	Main Earth circuits are covered under the Cables & Earthing EAMP		
			96		

Current State / Problem

- Maintenance of our Generation Assets

What is done?

Captured in PMs, JPs and procedures in Maximo (information spread across multiple locations)

What should be done?

Not always defined well

How can we effectively review and optimise our maintenance when it is difficult to see everything we currently do, and without a basis defined for what should be done.

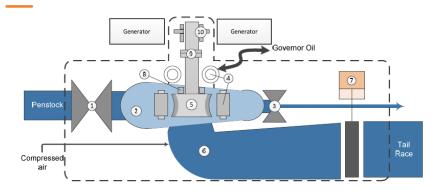
Maintenance Strategy Reviews

- Step 1: Develop FMECAs for equipment types and publish Maintenance Plans for each EAMP area. These will define what should be carried out and justify why the tasks are required.
 - what failure or risks are we mitigating by completing this maintenance?
- Step 2: Review current maintenance practices (PMs and JPs in Maximo) and complete updates to align our scheduled maintenance to the maintenance plan requirements
 - ensuring we are completing the right work on the right assets, at the right time.

What is a FMECA

- Failure Mode, Effects and Criticality Analysis

- Failure Modes and Effects and Criticality Analysis (FMECA) is used to identify potential failure modes and consequences of equipment failures. This helps identify appropriate Maintenance Tasks to eliminate / reduce the probability or consequence of failures.
- the FMECA process provides a method to:
 - Identify and assess generic and/or asset specific failure modes
 - Identify tasks to mitigate the effects or likelihood of the failure modes
 - Identify the risks of making changes to Planned Maintenance
- The FMEA forms the basis of what, why and when we undertake maintenance on our assets.


How can it fail?

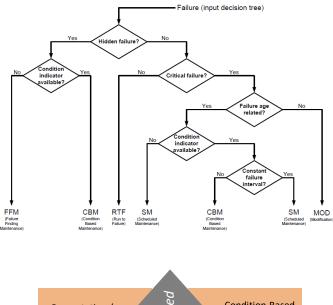
What is the impact?

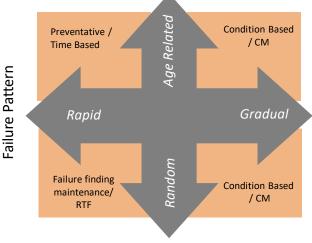
How can we mitigate the failure?

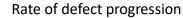
FMECA Example

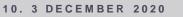
Item	Component	Scope / Terminal Points		
1	Main Inlet Valve (MIV)	Including Main inlet valve, actuating gear/hydraulic power packs and bypass/priming valves, up to spiral case inlet. Tekapo head gates are covered under the hydraulic structures EAMP. The penstock section between the MIV and scroll case at TKU G1-G4 is excluded.		
2	Scroll case and stationary assembly	Scroll case, stay vanes, top/bottom covers, cheek plates & stationary wear rings.		
3	Relief valve (RV)	Includes the relief valve and valve actuating gear.		
4	Wicket gates and actuation assembly	Includes wicket gates, wicket gate links, swing rings, swing ring links and governor serv motors up to oil inlet and outlet ports.		
5	Runner	Includes runner, nose cone and shaft coupling bolts.		
6	Draft tube and air admission	Main draft tube, relief valve draft tube, drain valves and air admission systems Includes removable draft tube stop logs and their associated lifting assemblies. Tokaanu features permanent installation draft tube gates.		
7	Stop logs and lifting assembly			
8	Turbine bearing	Vertical guide bearing assembly, seals, packing and circulation/filtration system. Tuai G1 – G3 turbine bearings are horizontal combined thrust/guide bearings. Tekapo A turbine bearing is a water lubricated Thordon bearing.		
9	Shafts and couplings	Includes turbine and generator shafts and shaft couplings.		
10	Generator bearings	Includes complete vertical upper guide/thrust bearing assembly, lower guide bearing assembly, seals, packing and circulation/filtration systems. Tuai G1 – G3 generator bearings are horizontal guide bearings.		
Š	Penstocks	Refer to the EAMP for Penstocks		
Exclusions	Cooling water system	Cooling water supply to bearing heat exchangers and stator coolers is excluded. Refer to the EAMP for Hydro Cooling Water		
۵	Compressed Air	Refer to the EAMP for Compressed Air Systems		

Unit System Equipment Components


Parts


	Component	Part	Failure mode	Maintenance task type	task description	Frequency
	Spiral Casing		Cracked/Fractured/broken	Inspection Task (Physical CM)	UT inspection of spiral casing welds	5у
	Spiral Casing		Leakage	Inspection Task (Physical CM)	inspect SC flanges for leaks, note amount and location	1у
	Spiral Casing		Collapsed/Compressed/Defor med	Inspection Task (Physical CM)	Record depth, area and location of corrosion	4γ
	Top Cover		Cracked/Fractured/broken	Inspection Task (Physical CM)	Tap test top cover studs UT inspection of top cover studs	4y
	Top Cover		Leakage	Inspection Task (Physical CM)	visual inspection and record location and amount of top cover leaks	1у
	Bottom Cover		Leakage	Inspection Task (Physical CM)	visual inspection and record locationand amount of bottom cover leaks	1у
	Runner		Cracked/Fractured/broken	Inspection Task (Physical CM)	visual inspection for cracks on runner vanes (possible UT)	4γ
	Runner		Surface deteriorated	Inspection Task (Physical CM)	visual inspection and record location and depth of cavitation on runner	4γ
	Runner	seals	Surface deteriorated	Inspection Task (Physical CM)	measure seal clearances of runner seals	4γ
				Inspection Task (Physical	check unit alignemnt, measure runner seal	


- Expand hierarchy and record FMECA.
 - More columns are added for additional details
 - Different frequency for different equipment classes/ health/ service factors


Determining Maintenance Tasks

- Once a failure mode is identified and understood, tools can be used to help determine an appropriate and effective Maintenance Task / Type
- Assessment must also consider;
 - Regulatory / Statutory requirements
 - Impact of failure
 - Alternative methods or new technology (e.g. predictive analytics)
 - Spares holding/availability
 - Ease of defect identification
 - Cost of implementing condition monitoring

Development process diagram

Review Planning

Maintenance Review Priority The initial tranche of asset groups to be reviewed have been based on those assets defined with the highest Asset Ranking scores (within the Extreme and Major zones).

Data for Collation

Relevant EAMP/s Engineering drawings and manuals

Equipment Maintenance Review commences

Relevant Equipment BowTies

Data sheets of current maintenance routines from Maximo

- Data sheets of historical failure modes
- Data sheets of historical RCM failure modes from Maximo

FMECA & Risk Review

- **Failure Mode Classification**
- **Functional Failure**
- Failure Mode
- Cause
- Failure Behaviour
- Failure effect

Criticality Questions

- Generation Critical?
- Safety Critical?
- **Regulatory Requirements?**
- **Redundancies?**
- Hidden Failures?

Define Maintenance Task Align to Maintenance Type

- **Final Questions**
- **Outage Required?**
- Working at heights •
- Confined spaces? ٠
- Who to undertake Task?

Other FMECA Inputs

- BowTie maintenance review
- **Engineering Drawings**
- Current maintenance tasks
- Historical defect & RCM data

Maintenance Type

PREVENTATIVE MAINTENANCE (PM) A time based maintenance task ranging from a

simple visual inspection to a full asset overhaul

PREDICTIVE MAINTENANCE (PdM) The utilisation of plant and system data to determine early failure by digital analytics

CONDITION MONITORING (CM) Asset performance monitoring utilising devices

either time based, on request or continuous

RUN TO FAILURE (RtF) Assets that either have a low failure risk or have redundancy are fixed on failure

PRESERVATION MAINTENANCE (PrM) Tasks that can be PM, PdM or CM to ensure out of service assets or spares are fit for purpose

OPERATIONAL CHECKS (OC)

A form of preventative maintenance typically made up of operator inspections and function tests

ROTATE OR DISPOSE (RoD)

A task for assets that can be returned to service or a task needed for safe disposal of an asset

DEFECT MAINTENANCE (DM)

not defined to a FMECA failure mode

Post Review Actions

Output at end of 5-day **MSR Sprint**

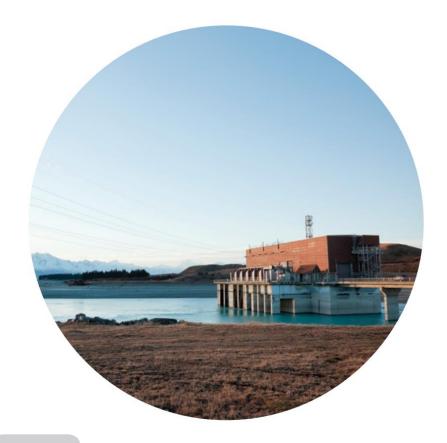
- Completed FMECA Equipment BowTie
- review of maintenance
- Cause First version of
- Equipment Maintenance Plan/s (EMP)

Ongoing actions

- following 5-day sprint Review and updating of current practices (PMs and JPs in Maximo)
- Development of analytics and digital initiatives identified during the reviews
- Maintenance cost analysis resulting from proposed changes
- Spares and inventory reviews
- Other actions as discovered

Content of a Maintenance Plan

- Information included in an Equipment Maintenance Plan


- Asset Summary
- Strategy Overview
- Maintenance Types and Tasks
- Critical/ Emergency Spares
- Maintenance Data
- Maintenance Expenditure
- Support Contracts
- Improvement Actions
- links to FMECA and EAMP

Implementation and Progress

— 5 day dedicated workshops

Dedicated week blocks (sprints) for each asset group or combined asset groups. These follow the principles of an agile sprint and are customised to suit the needs of the MSR.

Commitment required from participants to assist in preparation and participate for 5 days with minimal interruption.

Actions recorded for ongoing work outside of the sprints.

15 Asset group MPs completed to date, work ongoing...

13. 3 DECEMBER 2020

Who are involved

- Resource requirements

MSR Sprint (1 week)

Technical Authority + Site O&M Support

the knowledge, experience and participation from the Site Maintainers and Operators is a vital contribution to the MSR process as the outcomes will materially affect them too.

Asset Strategy team support

Support from the Asset Strategy team to define the process and tools, facilitate the sessions and help record results

Ongoing

Resource Planners, Technical Authority and site based O&M teams

Will be required to assist with review and update PMs and JPs to align with Maintenance Plan outcomes.

Asset Strategy team support

Support from the Asset Strategy team to track actions and clarify requirements

Outputs

- Outputs of the sprint, and ongoing actions

Outputs of the 1 week sprint:

- FMECA
- Maintenance Plans
- Bowtie maintenance reviews

Ongoing actions after completion of each sprint include:

- The review and updating of current practices (PMs and JPs in Maximo)
- Development of analytics and digital initiatives identified during the reviews
- Maintenance cost analysis resulting from proposed changes
- Spares and inventory reviews

Why is this important

- What we are getting for our effort

- Opportunity to challenge current maintenance practice, introduce more condition monitoring, condition based maintenance (predictive maintenance, data analytics)
- Clarity in approach to maintenance consistency across portfolio
- Reduced defect spend through improved, accurate maintenance strategies and process
- Reduced risk of asset failure through detailed review and targeted maintenance plans
- A basis to improve ability to review maintenance practices in more detail, on a more frequent basis
- Risk awareness of each maintenance task Identify risk associated to optimising PMs
- Enables improved defect/failure analysis

Questions