

DGHost to EVHost Asset Management Forum

> Presenter: Sharee McNab 24 June 2019

- Background
- DGHost[™]
- DGHost versus EVHost
- Hosting Capacity of EV's
 - Initial modelling results

Current PV Uptake in NZ

UNIVERSITY OF CANTERBURY Te Whare Wananga o Waitaha CHRISTCHURCH NEW ZEALAND

Cumulative Capacity 2018

1	*2	China	176,1 GW
2		USA	62,2 GW
3	•	Japan	56,0 GW
4		Germany	45,4 GW
5	8	India	32,9 GW
6		Italy	20,1 GW
7		UK	13,0 GW
8	₩.	Australia	11,3 GW
9		France	9,0 GW
10	٠.	Korea	7,9 GW

> 500GW PV worldwide

115,0 GW

EU*

Germany	548
Australia	459
Japan	442
*Honolulu	606

New Zealand 19

If NZ had 500 W/capita ~ 2.5 GW NZ Total Generation 9.2GW (2017)

Watt/capita

Impact of DG on Distribution Networks

- Network voltage limits exceeded
- Equipment current ratings are exceeded

(transformers & cables)

Distance from the transformer (m)

- Background
- DGHost[™]
- DGHost versus EVHost
- Hosting Capacity of EV's
 - Initial modelling results

Evaluation Network Hosting Capacities Evolution of DGHost[™]

DGHost[™] An Approximation Method

- Hosting Capacity maximum export power per DG
- Estimate hosting capacity (HC) of each LV network using the reference data set
 - 20 million HC results
- Optimization of predictor variables
 - As independent as possible
 - Easily determined by EDBs
- *k*-Nearest Neighbour Regression

DGHost[™] Inputs

Bendigo4550	Reduced Neutral Conductor Sizing
ransformer Rating (VA)	Penetration Levels
100000 🔹 👻	Penetration Level 1 20.09
lumber of ICPs	Penetration Level 2 50.0
50	Penetration Level 3 70.0
Max Feeder Impedance (Ω)	Penetration Level 4 100.0
0.02	

Per LV Network

- Transformer Rating
- Number of ICPs
- Max feeder impedance
- Penetration
 - 4 levels
- Network type
 - Single Phase
 - Reduced Neutral

Example Residential LV Network

DG Host Inputs:

Transformer Rating	300 kVA
Number of ICPs	31
Max Impedance Z	0.106 Ω
DG Penetration	??

3 radial underground feeders

 70 mm² 4 core Al underground cable

Hosting Capacity Results

Penetration Level 22.6%		
Conservative	Median	
P25 (W)	P50 (W)	
5400	5900	

Penetration Level 48.4%		
Conservative	Median	
P25 (W)	P50 (W)	
3500	3700	

- Inverters with grid supporting features
 - AS/NZS 4777.2:2015
- Voltage response modes
 - − Volt-Var: voltages ↑ absorbs reactive power
 - − Volt-Watt: voltages ↑ curtailing export

Hosting Capacity Results with Volt-Var

	Penetration Level 22.6%		Penetration Level 48.4%	
Volt-VAR	Conservative	Median	Conservative	Median
(%)	P25 (W)	P50 (W)	P25 (W)	P50 (W)
0	5400	5900	3500	3700
30	6900	7400	4900	5200
60	8900	9400	7600	8000

DGHost Online Tool

www.dghost.nz

Publications on our website

UNIVERSITY OF CANTERBURY The When Withmages Weitscher CHERTORIC NIVE ZLAND

DGHost™ FAQs Contact Sign Up Login

DGHost™

To learn more about the DGHost[™] Service, have a look at our DGHost[™] Brochure.

Distributed Generation connected on Low Voltage Networks

The connection of Distributed Generation (DG) units, such as solar PV systems, to an electricity distribution network can cause parts of the network to become congested. This congestion is typically the result of voltage rise along feeders or the overloading of equipment in the network. Consequently, when considering DG applications, Electricity Distribution Businesses (EDBs) must be able to determine the maximum amount of DG that can be installed at each ICP in a network, without adversely affecting its operation or breaching network requirements. This amount is defined as the hosting capacity of the network.

DG hosting capacity can be determined by full power-flow simulations of a network, or by approximation methods, such as those used in the DGHost[™] Service. The EEA Guideline for the Connection of Small-Scale Inverter Based Distributed Generation (draft) specifies appropriate connection requirements for DG applications according to network-specific hosting capacity thresholds. This categorises DG applications into a three-tier traffic light system based on the hosting capacity, as shown in the picture below. Each category reflects the likely impact of the DG exporting into the LV network, and thus if it can be approved for connection.

Three tier traffic light system for assessing DG applications using hosting capacity.

- Background
- DGHostTM
- DGHost versus EVHost
- EVHost
 - Initial modelling results

	PV modelling	EV modelling
Location	Known, application process	Unknown, can infer from load analysis, incentivise registration
Energy profile	Sunshine hours well defined - Long historical records	 Diverse EV Charging profiles Multiple charging rates Diverse charging frequencies
Correlation of generation/load	LV networks high degree of generation correlation	Some correlation eg. charge when home from work, however opportunities to introduce diversity

- Background
- DGHostTM
- DGHost versus EVHost
- EVHost
 - Initial modelling results

EV Modelling Results

- LV network chosen, cluster centre of an urban network, 71 households (Orion network)
- Different charging approaches explored
- Charging 2kW/4kW charger (Level 1/2 charging)
- Anxiety factor AF 0->1
 - 0 perfect knowledge of charge required for next day
 - 1, nervous, always charge no matter the SOC.

Typical Residential Network

71 ICPs68 Residential3 Non-residentialAlternating phase allocation

Journey Distributions

Voltage Violations in Test Network

4 kW Charger

% of HH time periods in a year (2.5% equates to 438 HH's/17520)

Voltage Violations Magnitudes

2 kW Charger - 100% EVs

4 kW Charger – 100% EVs

Summary

- Example analysis for a "typical" network, with typical loads
- Incentivising delayed charging for EV's can reduce diversity, more problematic at higher charging rates.
- By morning the best charging strategy to give greater diversity on the network.
- While load diversity helps with transformer loading it doesn't help with voltage issues as these intimately linked with how the loads are distributed.
- Future work extension to large LV data sets.

