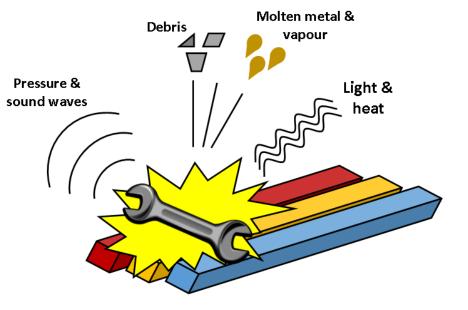


## Arc Flash Guide

REVIEW



EEA.CO.NZ




- What is arc flash?
- How to analyse/quantify arc flash?
- How to asses the risk of arc flash hazards?
- How to mitigate arc flash?



## Introduction to Arc Flash

- What is arc flash?
- Contributing factors
- Consequences
- Serious hazard even at low voltage







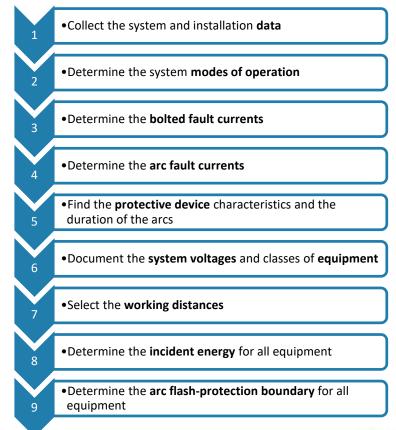


## Arc Flash Analysis

- Gathering data
- Calculation methods

Results:

- Incident energy levels (cal/cm<sup>2</sup>)
- arc flash boundaries.






## Arc Flash Analysis

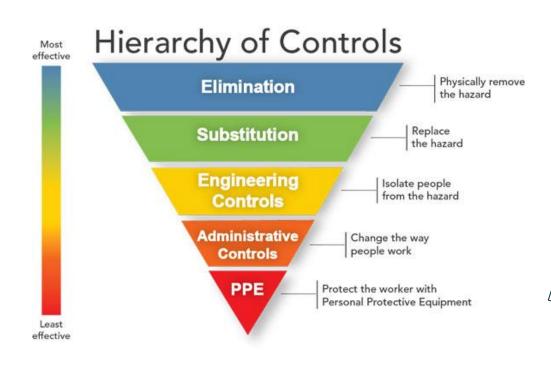
- IEEE1584 (empirical)
- Ralph Lee (theoretical)
- Doughty Neal (empirical)
- Dan Doan (theoretical)
- Table methods
  - NFPA 70E
  - NESC

Note: some methods come from the US and will use different units and voltages





## **Risk Assessment**


|            |          |                                                | Consequence                            |                                       |                                        |                                              |                        |
|------------|----------|------------------------------------------------|----------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------------|------------------------|
|            |          |                                                | Trivial                                | Minor                                 | Moderate                               | Major                                        | Catastrophic           |
|            |          |                                                | Trivial or no<br>treatment<br>required | Injury with<br>short-term<br>recovery | Injury with<br>medium term<br>recovery | Severe or<br>permanent<br>injury or fatality | Multiple<br>fatalities |
| Likelihood | Frequent | Routinely seen in this industry                | High<br>11                             | High<br>13                            | Extreme<br>20                          | Extreme<br>22                                | Extreme<br>25          |
|            | Likely   | Occasionally seen,<br>2 or 3 times per<br>year | Moderate<br>5                          | High<br>12                            | High<br>15                             | Extreme<br>21                                | Extreme<br>24          |
|            | Possible | Seen less than<br>once per year                | Moderate<br>4                          | Moderate<br>7                         | High<br>14                             | High<br>17                                   | Extreme<br>23          |
|            | Unlikely | Occurs once every<br>few years                 | Low<br>2                               | Moderate<br>6                         | Moderate<br>9                          | High<br>16                                   | High<br>19             |
|            | Rare     | Hypothetical<br>occurrence                     | Low<br>1                               | Low<br>3                              | Moderate<br>8                          | Moderate<br>10                               | High<br>15             |





6

## Mitigation

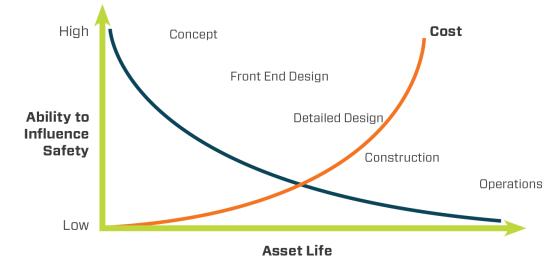




Electricity Engineers' Association

## Elimination or Isolation?

### Remove the electrical hazard

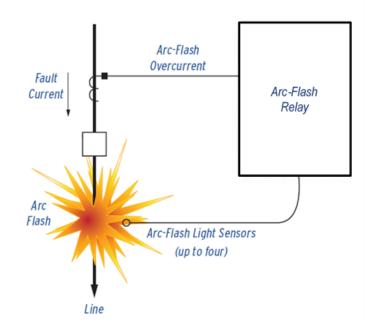

- Electrical isolation is dependent on a set of procedures (SM-EI), and therefore can hypothetically fall prey to *human error*
- Switching to isolate equipment introduces its own set of hazards
- Electrical isolation is still an important tool, but it may not be considered to entirely *eliminate* the hazard.



# **Engineering Controls**

## Choice of equipment

Electricity Engineers' Association




- Equipment design
- Arc containment & venting
  - Is equipment installed properly?
- Legacy equipment
  - What is a reasonable cost?

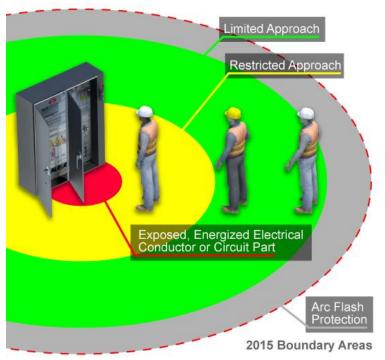


# **Engineering Controls**

Protection



Electricity Engineers' Association


### Remote switching





## **Administrative Controls**

**Boundaries** 



Electricity Engineers' Association

#### Labels

# AWARNING

#### Arc Flash and Shock Hazard Present Appropriate PPE Required

#### RFN CB5

Arc Flash Boundary 7.80 m Incident Energy @ 0.91 m Working Distance 0.91 m Shock Hazard Exposure 11000 Vac Always Maintain MADs

Always carry out a Risk Assessment prior to encroaching the 8 cal/cm<sup>2</sup> boundary. 8 cal/cm<sup>2</sup> Boundary **1.1 m** 

26/09/2017 CALCULATIONS BASED ON NORMAL SYSTEM CONFIGURATION

#### PPE Requirements

Arc-rated (AR) clothing and equipment with an arc rating equal to or greater than the determined incident energy.

AR overall, AR face shield and AR balaclava, AR rainwear (AN), hard hat, safety glasses, hearing protection, leather gloves, leather footwear



# Selection of Clothing and PPE

- Outer Wear
- Clothing layering
- Undergarments
- Care and maintenance
- Verification

**Other Considerations** 

- Hearing protection
- Respiratory issues
- Blunt force trauma

Electricity Engineers' Association







## Questions for industry

- How far have organisations come since the 2011 guide?
  - What % of assets have been assessed for arc flash?
  - Are there programmes for ongoing arc flash assessments?
- Is Safety in Design being applied to arc flash?
- What are unresolved issues that require further investigation?
  - New IEEE 1584 standard in the near future
- Is there a need for workshops or training?



## Questions & Comments?



**CCO** Electricity Engineers' Association