

ASSET MANAGEMENT

2017

EEA.CO.NZ

Programme Day 2

8.00am	Tea & Coffee		
8.30am	Opening Remarks: Mike Whaley — EEA AMG Chair		
8.35am	Theory of Conductor Aging Characteristics	Mike Whaley — EEA AMG Chair	
8.50am	Conductor Conditions Assessment Working Group	Dan Tombleson — LineTech Consulting	
9.05am	Northpower Conductor Testing Regime	Russell Watson — North Power	
9.20am	Conductor Testing Facilities	Aaron Tai — Electropar	
9.35am	Conductor Testing	Joshua Butterfield & Cheeyew Ng — Prysmian	
9.45am	Southern Power Companies Overhead Line Design Forum	Carl Rathbone — PowerNet	
10.00am	Morning Tea		
10.20am	Pole Tagging — Workshop	Mike Whaley — EEA AMG Chair	
10.40am	Pole Stapling programme	Bradley Singh — Wellington Electricity Lines	
10.55am	Concrete Pole Strength Analysis	Mike Whaley — Powerco	
11. 1 5am	Concrete Specifications for Pre Stressed Power Poles	Rodger Griffiths — Westpower / Mitton Electronet	
11.30am	Pole Foundation Testing — Proposal for Industry Collaboration	Carl Rathbone — PowerNet	
11.50am	Day 2 Closing Remarks	Juliet Clendon — EEA Technical Advisor	

ASSET MANAGEMENT

2017

Overhead Conductors

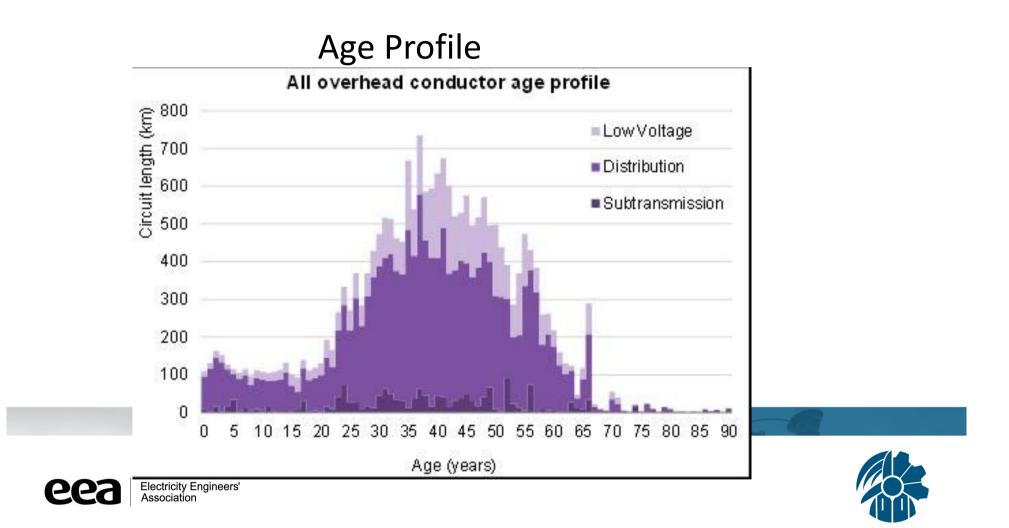
Review of End of Life Factors

Based on material from Metal Manufacturers Ltd Technical Department

EEA.CO.NZ

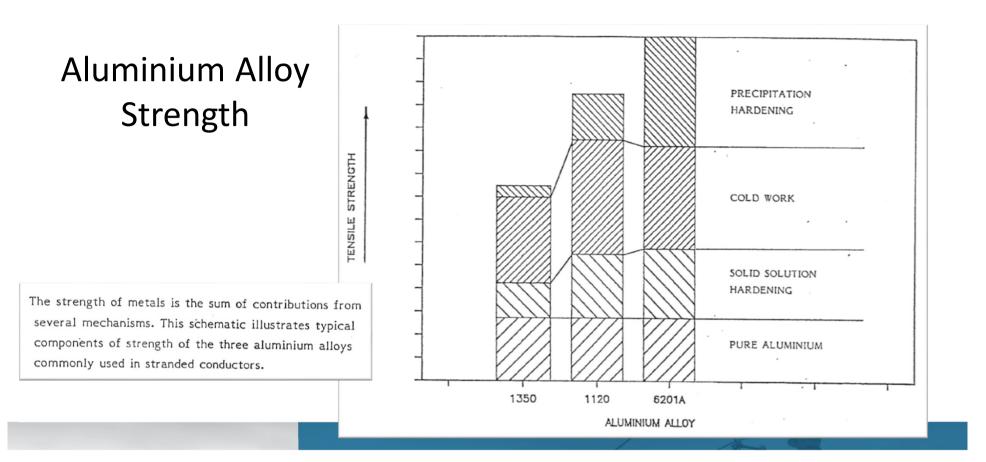
Overhead Conductor lengths in NZ

	Circuit Length (km)	Source: 2
Transmission HVDC (& earth electrode)	1,180	Transpow for distrib
Transmission HVAC	15,400	
Total Transmission	16,580	
Subtransmission	9,697	
Distribution	75,296	
Low Voltage	26,950	
Total Distribution	111,943	
Street Lighting (OH & UG)	14,191	6


Source: 2016 ID for Transpower, 2015 ID for distribution

Electricity Engineers' Association

2005 Greymouth tornado, Ministry of Civil Defence and Emergency Management



Prevalent Conductor Types

AAC (1350 alloy)		
AAAC (1120 alloy)		
AAAC (6201A alloy)		
ACSR (1350 alloy with steel core)		
Aluminium clad steel		
Hard drawn copper		
Galvanised steel		

Conductor Specifications

Deciding on your standard conductors

Grease or no grease? If so, what type of grease?

Identification of alloy type.

Treatment of steel core – galvanised or aluminised

Fittings – sleeves/ joints, deadends, terminations

Influences on End of Life - Conductor Damage

Contact with foreign objects like storm debris, vehicles

Conductor clashing causing arcs that damage conductor strands

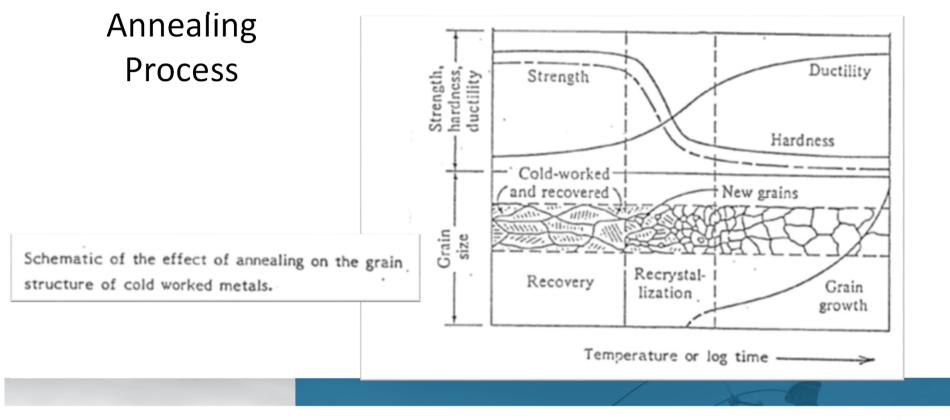
Lightning strikes, fires

Gun shot damage

Loose clamps causing abrasion damage

Influences on End of Life - Annealing

Occurs over temperature and time, affecting strength, resistivity and ductility


Involves diffusion of atoms within the crystalline structure

Often follows a three stage process:

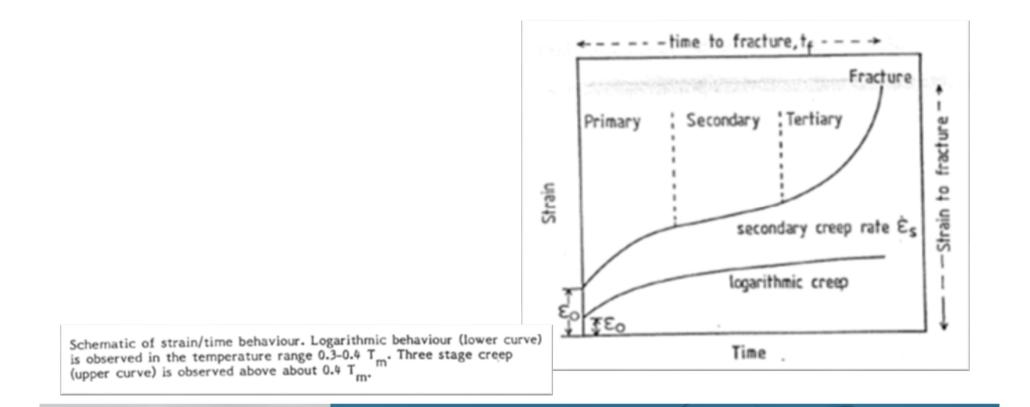
- 1. Recovery phase
- 2. Re-crystallisation phase
- 3. Grain growth phase

Influences on End of Life - Corrosion

- Usually involves a complex combination of corrosion of individual wires, crevice corrosion and electromechanically enhanced corrosion.
- Corrosion susceptibility depends on the exposure materials:
 - Chlorides in coastal areas
 - Sulphur dioxide in industrial areas
- Wash from other metal salts such as copper
- Loss of galvanising on steel core.
- Grease is applied to prevent these chemicals from contacting the conductor in aqueous solution.

Influences on End of Life - Creep

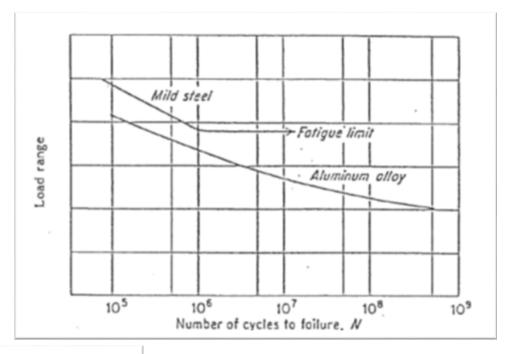
An inelastic time dependant elongation


May cause lines to sag within ECP34 limits over time

Of concern mostly to transmission system circuits with long spans and long life towers

Includes strand settlement, strand embedment and metallurgical creep

Influences on End of Life - Fatigue


Cyclic (dynamic) stresses superimposed on normal (static) stresses, after time cause fatigue cracks and eventual failure.

Static Stresses	Dynamic Stresses
Support, connection, termination hardware	Wind induced vibration
Conductor tension	Aeolian vibration
Conductor bend angle on clamps	

S – N Curves

Schematic of fatigue properties of metals. Aluminium and copper do not show a limiting fatigue stress, and fatigue strength is usually characterised by the fatigue stress at 10 cycles. This diagram is known as the S - N curve.

Influences on End of Life - Fretting

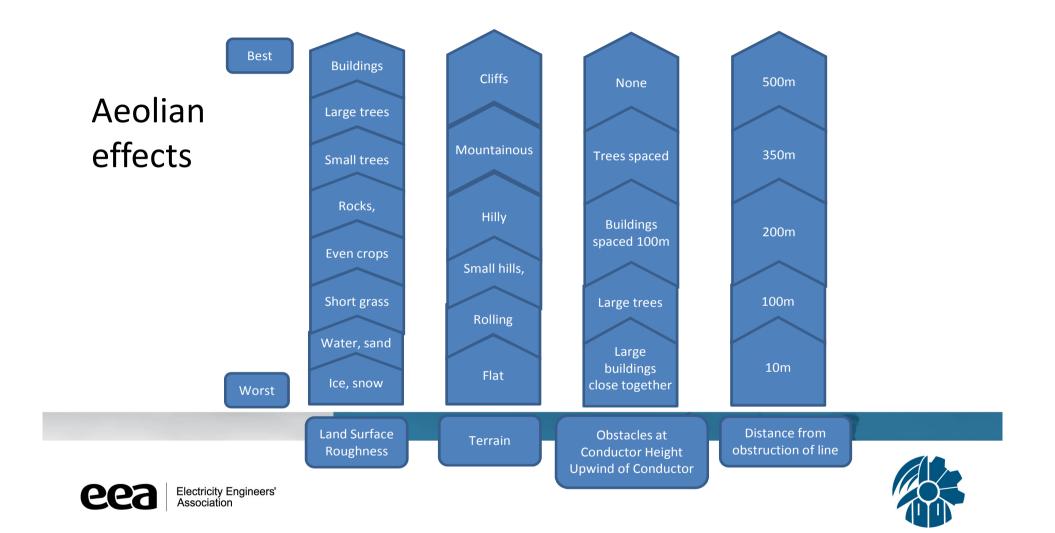
Wear and corrosion at contact surfaces, such as between strands or at fittings.

Under load, repeated surface motions causes microscopic damage on surfaces.

Three stages:

- 1. Fretting formation
- 2. Crack initiation
- 3. Crack propagation

Typically manifests as a crack 45° to stress axis.


Fretting

Usually most severe where mismatches of stress between strands occur at ends of fittings, terminations, suspension points, joints where static and dynamic loadings are the highest

Aeolian vibration versus conductor's self damping abilities

Influences on End of Life - Conductor Fittings

Using the right conductor sleeves and other fittings helps prolong conductor life

Gaskets and compounds in the fittings need resilience to electric fields

Single compression sleeve vs two piece sleeves

Long life vs ease of installation

So what does this all mean?

We've looked at some of the context around the magnitude of conductor renewal and some theory around conductor end of life

Industry survey in July 2015 indicated a gap in industry knowledge of how conductors age

We have set up a working group tasked with investigating and compiling the extent of industry knowledge of conductor aging process

Topics in this morning's agenda will cover this topic further.

