

Preventing Distribution Transformer Bushing Gasket Erosion

Bushing Gasket Erosion

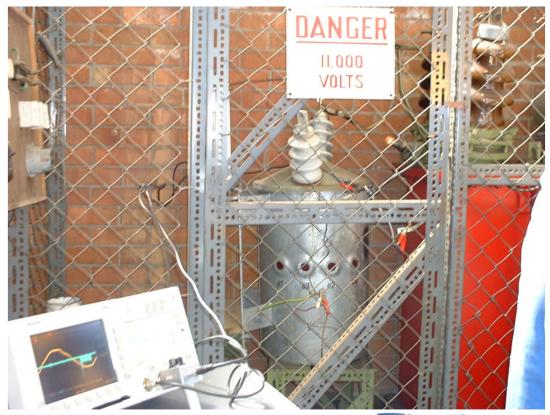
- Westpower's transformers were blowing up!
 - No apparent external cause
 - Water was found in tanks
 - Gaskets were eroded
 - Only affected new style transformers (older T&J transformers were not affected)

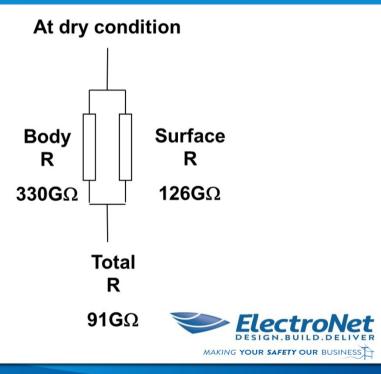
Transformer Comparison

Bushing with problem

Bushing without problem

Eroded Gaskets


- Near new gasket shown on bottom left
- Various stages of erosion were found on the in-service gaskets


Partial Discharge?

- One possibility was that partial discharge was occurring across the air gap between the insulator and the tank.
- This was assessed using the following test and carried out by Dr Yafei Zhou of IRL.

Bushing Model

Leakage Current Measured Values

Voltage (kV)	3	6	9
AC total (μA) dry	10.3	18.6	26.2
AC surface (μA) dry	2.6	4.7	7.1
AC surface (μA) wet	14.2	25.4	38.4

Potential Solutions

- 1. Replace the existing gasket with a conducting gasket.
- 2. Apply conducting paint
- 3. Apply metal foil or braid.
- 4. On-site repairs.
- 5. Use metal coating on insulator interface.

Chosen solution

- Use conductive coated insulator bases
- Available as standard on 22 kV bushings
- Problem went away following retrofitting campaign